Symbols and Tables

q = Displaceme		: cm ³	Motor:			
n = Revolutions p = Pressure		: min ⁻¹ : bar	Oil concumption	Q =	$q \times n$	
p = Pressure $\Delta p = Pressure dr$	on	: bar	Oil consumption [I/min]	Q =	$1000 \times \eta v$	
Q = Oil capacity	op	: $l/min = dm^3/min$	[011111]		a A n mn	
v = Speed		: m/s	Output torque	M =	$\frac{q \times \Delta p \times \eta m}{2}$	[Nm]
L = Length		: m			62,8	
D = Piston diam		: mm	_		$Q \times \Delta p \times \eta t$	
d = Piston rod diameter		: mm	Output power	N =	600	[kW]
$D_{i} = Bore of pipe$: mm				
$D'_{h} = Hydraulic diameter$ A = Area		: mm : cm ²	Speed	n =	$Q \times \eta v \times 1000$	[min ⁻¹]
a = Ring area		: cm ²	Opeeu	–	q	firmi 1
t = Time		: S.	Cylinder:			
m = Volume		: kg	-,			
F = Force		: daN	Compressive force	F =	$p \times A \times \eta m$	[daN]
M = Torque		: Nm		_		
P = Power		: kW	Tensile force	F =	p×a×ηm	[daN]
A _s = Break load E = Elasticity module		: daN				
E = Elasticity mo		: kp/cm² : m	Speed out	v =	$\frac{Q \times \eta v}{6 \times A}$	[m/s]
S = Safety facto	0		Opeed out	v —	6×A	ling
v = Kinematic v						
$\eta v = Volumetric e$: mm²/s			$0 \times m_{V}$	
ηm = Mechanical	efficiency		Speed in	v =	$\frac{Q \times \eta v}{6 \times a}$	[kW]
ηt = Total efficier	ncy					
λ = Resistance				_	$\frac{A \times v \times 6}{2v}$	
$V_{ac} = Accumulato$			Oil consumption out	Q =	<u>2v</u>	[l/min]
	l capacity available in acc	umulator		~	-	[]/]
P_1 = Lowest oil p P_2 = Highest oil p			Oil consumption in	Q =	$\frac{a \times v \times 6}{2^{v}}$	[l/min]
$P_0 = Pre-charge$	Jessule		Compressive force			
			with differential	F =	$P \times (A-a) \times \eta m$	[daN]
			cut-in	• -		
Ratio factors:						
Power	1 kw	= 1,36Hp	Tube:			
	1Hp	= 75 kpm/s			Q × 100	
		= 0,736 kw	Flow speed v =		$\frac{1}{6 \times D^2 \times 0.785}$	[m/s]
Torque	1 kpm	= 9,81 Nm			$0 \times D^2 \times 0,700$	
		= 7,233 lbf ft	December 1			
Proceuro	1 Nm 1 kp/cm ²	= 0,102 kpm	Pressure loads in	4n -	$\lambda \times L \times 0,89 \times v^2$	×5 [bor]
Pressure		= 98.000 Pa = 0,981 bar	straight pipe leads	Δp =	Di	— [bar]
		$= 9,81 \text{ N/cm}^2$				
		= 14,22 psi			64	0.216
	1 psi	= 0,06895 bar	Resistance number:	λ	$= \frac{04}{2} \lambda tu$	$rb. = \frac{0,316}{4\sqrt{R_e}}$
	·	= 0,0703 kp/cm ²			Re	4√ R _e
	1 bar	= 1,0194 kp/cm ²				
Volume	1 US, gallon	= 3,785 liter		_	$v \times D_h$	× 1000
	1 Eng. gallon	= 4,546 liter	Reynolds number	R _e	$=$ $\frac{v \times D_h}{v}$	
	1 in ³ 1 liter	= 16,38 cm ³	Accumulator size:		·	
Area	1 in ²	= 1,0 dm3 = 645,2 mm ²	Accumulator Size:			
, 100	1 foot ²	$= 92900 \text{ mm}^2$., P₁
Speed	1 km/h	= 0,2778 m/s				$\frac{V_{x} \times \frac{P_{1}}{P_{0}}}{1 - \frac{P_{1}}{P_{2}}}$
1	1 foot/s	= 0,3048 m/s	With slow charging ar	nd slow	discharging V_{ac} =	<u> </u>
	1 mile/h	= 0,447 m/s	2.0			1- ¹
Acceleration	1 foot/s ²	= 0,3048 m/s ²				' P ₂
Length	1 in	= 25,4 mm				
	1 foot	= 0,3048 m				_
Dumm	1 yd	= 0,9144 m				$V_{\rm v} \times \frac{P_1}{P_1}$
Pump:	-		With quick charging a	and quict	discharging V	$=$ $\overline{P_0}$
Power consumption	$N_{an} = \frac{Q \times p}{600 \times nt}$	κ\//]	with quick charging a	inu quici	Cuscillarging Vac	- 1
	600×ηt					P ₁ 1,5
	•					$= \frac{V_{x} \times \frac{P_{1}}{P_{0}}}{1 - \frac{P_{1}}{P_{2}} \frac{1}{1.5}}$
	$a \times n \times n_V$					- 2
Supplied oil capacit	y Q = $\frac{q \times n \times \eta v}{1000}$	[l/min]				
	1000					L Po
						$= \frac{V_{x} \times \frac{P_{2}}{P_{0}}}{\frac{1}{\frac{P_{2}}{P_{1}}} \frac{1}{\frac{1}{1,5}}}$
1	q × p		With slow charging ar	nd quick	discharging Vac =	$= \frac{P_0}{1}$
Input torque	$M = \frac{q \times p}{62,8 \times \eta m}$	[NM]				$P_{2} = \frac{1}{15}$
	02,0 × 1/11					$\frac{12}{D_1}$ -1
						FI '

ISO/CETOP Symbols

ISO/CETOP Symbols

