Symbols and Tables

q	= Displacement	: cm^{3}
n	= Revolutions	: min-1
p	= Pressure	: bar
$\Delta \mathrm{p}$	= Pressure drop	: bar
Q	= Oil capacity	: $1 / \mathrm{min}=\mathrm{dm} 3 / \mathrm{min}$
v	= Speed	: m/s
L	= Length	: m
D	= Piston diameter	: mm
d	= Piston rod diameter	: mm
D	= Bore of pipe	: mm
$\mathrm{D}_{\mathrm{h}}^{1}$	= Hydraulic diameter	: mm
A	= Area	: cm^{2}
a	= Ring area	: $\mathrm{cm}{ }^{2}$
t	= Time	: s.
m	= Volume	: kg
F	= Force	: daN
M	= Torque	: Nm
P	= Power	: kW
$\mathrm{A}_{\text {s }}$	= Break load	: daN
E	= Elasticity module	: kp/cm²
1	= Free column length	: m
S	= Safety factor	
v	= Kinematic viscosity	: mm²/s
	= Volumetric efficiency	
	= Mechanical efficiency	
	= Total efficiency	
	= Resistance figure	
$V_{\text {ac }}$	= Accumulator size	
$\mathrm{V}_{\mathrm{x}}=$ Required oil capacity available in accumulator		
$\mathrm{P}_{1}=$ Lowest oil pressure		
$\mathrm{P}_{2}=$ Highest oil pressure		
$\mathrm{P}_{0}=$ Pre-charge		

Ratio factors:

Pump:

Power consumption $\quad N_{\mathrm{an}}=\frac{\mathrm{Q} \times \mathrm{p}}{600 \times \eta t} \quad[\mathrm{~kW}]$

Supplied oil capacity $Q=\frac{q \times n \times \eta v}{1000}[1 / \mathrm{min}]$

Input torque $\quad M=\frac{q \times p}{62,8 \times \eta m} \quad[\mathrm{Nm}]$

Motor:

Oil consumption $[l / \mathrm{min}]$	$\mathrm{Q}=\frac{\mathrm{q} \times \mathrm{n}}{1000 \times \eta \mathrm{v}}$		
Output torque	$\mathrm{M}=$	$\frac{\mathrm{q} \times \Delta \mathrm{p} \times \eta \mathrm{m}}{62,8}$	$[\mathrm{Nm}]$
Output power	$\mathrm{N}=$	$\frac{\mathrm{Q} \times \Delta \mathrm{p} \times \eta \mathrm{t}}{600}$	$[\mathrm{~kW}]$
Speed	$\mathrm{n}=$	$\frac{\mathrm{Q} \times \eta \mathrm{v} \times 1000}{\mathrm{q}}$	$\left[\mathrm{min}^{-1}\right]$

Cylinder:

Compressive force	$F=$	$p \times A \times \eta m$	[daN]
Tensile force	$F=$	$p \times a \times \eta m$	[daN]
Speed out	$\mathrm{V}=$	$\frac{Q \times \eta v}{6 \times A}$	[m/s]
Speed in	V =	$\frac{Q \times \eta v}{6 \times a}$	[kW]
Oil consumption out	$Q=$	$\frac{A \times v \times 6}{2^{v}}$	[1/min]
Oil consumption in	Q =	$\frac{a \times v \times 6}{2 v}$	[1/min]
Compressive force with differential cut-in	$F=$	$P \times(A-a) \times \eta m$	[daN]

cut-in
Tube:
Flow speed $v=\frac{\mathrm{Q} \times 100}{6 \times \mathrm{D}^{2} \times 0,785} \quad[\mathrm{~m} / \mathrm{s}]$
$\begin{aligned} & \text { Pressure loads in } \\ & \text { straight pipe leads }\end{aligned} \quad \Delta p=\frac{\lambda \times L \times 0,89 \times v^{2} \times 5}{D_{i}} \quad[\mathrm{bar}]$

Resistance number: $\lambda=\frac{64}{\mathrm{R}_{\mathrm{e}}} \lambda$ turb. $=\frac{0,316}{4 \sqrt{\mathrm{R}_{\mathrm{e}}}}$

Reynolds number $\quad R_{e} \quad=\quad \frac{v \times D_{h} \times 1000}{v}$
Accumulator size:
With slow charging and slow discharging $\mathrm{V}_{\mathrm{ac}}=\quad \frac{\mathrm{V}_{\mathrm{x}} \times \frac{\mathrm{P}_{1}}{\mathrm{P}_{0}}}{1-\frac{P_{1}}{P_{2}}}$

With quick charging and quick discharging $\mathrm{V}_{\mathrm{ac}}=$
$\frac{V_{x} \times \frac{P_{1}}{P_{0}}}{1-\frac{P_{1}}{P_{2}}} \frac{\frac{1}{1,5}}{}$

With slow charging and quick discharging $\mathrm{V}_{\mathrm{ac}}=$

ISO/CETOP Symbols

Work line

ISO/CETOP Symbols

Normally closed

